International Journal Of Mathematical Sciences And Engineering Applications

(IJMSEA)

International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 15 No. II (December, 2021), pp. 7-9

CONTINUED FRACTION PATTERN OF DIRICHLET SERIES

DR KUMARI SREEJA S NAIR

Associate Professor of Mathematics, Govt.Arts College, Kariavattom
Thiruvananthapuram, India

Abstract

In this paper we give a rational a correction function to the series. certainly improves the value of sum of the series and gives a approximation to it.Also correction function follows infinite continued fraction pattern.

1. Introduction

Commenting on the Lilavati rule for finding the value of circumference of a circle from its diameter, the commentator series for computing the circumference from the diameter. One such series attributed to illustrious mathematician Madhava $14^{\text {th }}$ century is

$$
C=\frac{4 d}{1}-\frac{4 d}{3}+\frac{4 d}{5}-\cdots \pm \frac{4 d}{2 n-1} \mp \frac{4 d\left(\frac{2 n}{2}\right)}{(3 n)^{2}+1},
$$

where + or - indicates that n is odd or even and C is the circumference of a circle of diameter d.

Key Words : Correction function, Error function,

2. TheDirichlet's Series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}$.

We know that Dirichlet series is convergent and converges to eta function.
Definition : If G_{n} denotes the correction function, then the error function is defined as

$$
E_{n}=G_{n}+G_{n+1}-\frac{1}{(n+1)^{2}} .
$$

Theorem : The correction functions for series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}$ follow an infinite.
Proof: We know that the correction function for the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}$ is $G_{n}=$ $\frac{1}{2 n^{2}+2 n+2}$. The corresponding function is

$$
\left|E_{n}\right|=\frac{4}{\left\{\left(2 n^{2}+2 n+2\right)\right\}\left\{\left(2 n^{2}+6 n+6\right)\right\}(n+1)^{2}} .
$$

The first order corection functionis $G_{n}[1]=\frac{1}{2 n^{2}+2 n+2}$. For further reducting error function, choose

$$
G_{n}=\frac{1}{\left\{2 n^{2}+2 n+2\right\}+\frac{A_{1}}{\left\{2 n^{2}+2 n+2\right\}+x}}
$$

where A_{1} and x are any two real numbers. Then the error function $\left|E_{n}\right|$ is a minimum for $A_{1}=4$ and $x=8$.

Again for reducing error, choose the correction function as

$$
G_{n}=\frac{1}{\left\{2 n^{2}+2 n+2\right\}+\frac{4}{\left\{2 n^{2}+2 n+10\right\}+\frac{A_{2}}{\left\{2 n^{2}+2 n+1\right\}+x}}} .
$$

Then $\mid E_{n}$ is a minimum when

$$
G_{n}=\frac{1}{\left\{2 n^{2}+2 n+2\right\}+\frac{4}{\left\{2 n^{2}+2 n+10\right\}+\frac{9}{\left\{2 n^{2}+2 n+26\right.}}} .
$$

The third order correction function is

$$
G_{n}[3]=\frac{1}{\left\{2 n^{2}+2 n+2\right\}+\frac{4}{\left\{2 n^{2}+2 n+10\right\}+\frac{9}{\left\{2 n^{2}+2 n+26\right.}}} .
$$

Continuing like this we get an infinite continued fraction

$$
\frac{1}{\left\{2 n^{2}+2 n+2\right\}+\frac{4}{\left\{2 n^{2}+2 n+10\right\}+\frac{9}{\left\{2 n^{2}+2 n+26\right\}+\cdots}}}
$$

3. Application

The Dirichlet series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}={ }^{n}(2)=\frac{\pi^{2}}{12}$.
We have ${ }^{n}(2)=0.8224670334$, using a calculator.
For $n=10$, the series approximation after applying correction functions is given below.

Correction function	$S_{n}+(-1)^{n} G_{n}$
Without correction function	0.8179621756
$G_{n}[1]$	0.82246666801

References

[1] Sankara and Narayana, Lilavati of Bhaskaracharya with the Kriyakramakari, an elaborate exposition of the rationals with introduction and appendices (sd) K. V. Sarma (Visvesvaranand Vedic Research Institute, Hushiarpur), (1975), 386-391.
[2] Mallayya V. M., Proceedings of the Conference on Recent Trends in Mathematical Analysis, Allied Publishers Pvt. Ltd. ISBN 81-7764-399-1, (2003).
[3] Hardy G. H., A Course of Pure Mathematics, (Tenth Edition), Cambridge at the University Press, (1963)
[5] Knopp K., Infinite Sequences and Series, Dover (1956).

